Global Stability of Monostable Traveling Waves For Nonlocal Time-Delayed Reaction-Diffusion Equations
نویسندگان
چکیده
This short note is to fix the gap for the proof of Lemma 3.8 in our previous paper [M. Mei, C. Ou and X.-Q. Zhao, SIAM J. Math. Anal., 42 (2010) 2762-2790].
منابع مشابه
Remark on Stability of Traveling Waves for Nonlocal Fisher-kpp Equations
t − n 2 . These convergent rates are optimal in the sense with L-initial perturbation. The adopted approach is the weighted energy method combining Fourier transform. It is also realized that, the effect of time-delay essentially causes the decay rate of the solution slowly down. These results significantly generalize and develop the existing study [37] for 1-D time-delayed Fisher-KPP type reac...
متن کاملTraveling Fronts in Monostable Equations with Nonlocal Delayed Effects
In this paper, we study the existence, uniqueness and stability of traveling wave fronts in the following nonlocal reaction–diffusion equation with delay ∂u (x, t) ∂t = d u (x, t)+ f ⎛ ⎝u (x, t) , ∞ ∫ −∞ h (x − y) u (y, t − τ) dy ⎞ ⎠. Under the monostable assumption, we show that there exists a minimal wave speed c∗ > 0, such that the equation has no traveling wave front for 0 < c < c∗ and a tr...
متن کاملGlobal Asymptotic Stability of Traveling Waves in Delayed Reaction-Diffusion Equations
The existence and comparison theorem of solutions is first established for the quasimonotone delayed reaction-diffusion equations on R by appealing to the theory of abstract functional differential equations. The global asymptotic stability, Liapunov stability and uniqueness of traveling wave solutions are then proved by the elementary superand sub-solution comparison and squeezing methods. Sup...
متن کاملUniqueness of monostable pulsating wave fronts for time periodic reaction-diffusion equations
Keywords: Reaction–diffusion equations Pulsating wave fronts KPP and monostable nonlinearities Uniqueness a b s t r a c t We establish the uniqueness of pulsating wave fronts for reaction–diffusion equations in time periodic media with monostable nonlinearities. For the Kolmogorov–Petrovsky– Piskunov (KPP) type nonlinearity, this result provides a complete classification of all types of KPP pul...
متن کاملInviscid traveling waves of monostable nonlinearity
Inviscid traveling waves are ghost-like phenomena that do not appear in reality because of their instability. However, they are the reason for the complexity of the traveling wave theory of reaction-diffusion equations and understanding them will help to resolve related puzzles. In this article, we obtain the existence, the uniqueness and the regularity of inviscid traveling waves under a gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2010